Enrollment No:	Exam Seat No:

C.U.SHAH UNIVERSITY **Summer Examination-2018**

Subject Name: Advanced Calculus

Subject Code: 4SC03MTC1/4SC03ADC1 **Branch: B.Sc.(Physics)**

Semester: 3 Date: 22/03/2018 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 **Attempt the following questions:**

- Verify Euler's theorem for $u = ax^2 + 2hxy + by^2$. (02)
- If $x^4 + y^4 = 4b^2xy$, find $\frac{dy}{dx}$. (02)
- Find interval on which the function $x^3 12x 5$ is increasing or decreasing (02)
- If $y = p \cos \theta$, $z = p \sin \theta$ then what is the value of $\frac{\partial p}{\partial y}$ (02)
- Prove that $\beta(m, n) = \beta(m, n + 1) + \beta(m + 1, n)$. (02)
- Find asymptotes of the curve $x^2v^2 = a^2(x^2 + v^2)$, parallel to co ordinate axis. (02)
- Write the relation between Beta and Gama function g) (01)
- Is the function $f(x, y) = \sin(\frac{x-y}{x+y})$ homogeneous? (01)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

(14)If the function z = f(x, y) possesses the first order derivative in the domain D (08)then prove that $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$.

If $u = \log(\tan x + \tan y + \tan z)$ then prove that b) (06) $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial x} + \sin 2z \frac{\partial u}{\partial z} = 2.$

Q-3

a)

Attempt all questions (14)(08)

If u = x + y + z, uv = y + z, uvw = z then prove that $\frac{\partial(u,v,w)}{\partial(x,y,z)} \frac{\partial(x,y,z)}{\partial(u,v,w)} = 1$. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{z}\right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$. b) (06)

O-4 Attempt all questions

(14)

State and prove Taylor's theorem for the function of two variables. a)

(14)

	b)	Evaluate: $\int_0^1 x^m (\log \frac{1}{x})^n dx$.	(06)
Q-5		Attempt all questions	(14)
	a)	State and prove Duplication formula.	(08)
	b)	Find extreme value of $f(x, y) = x^3 + y^3 - 3xy$	(06)
Q-6		Attempt all questions	(14)
	a)	Find all asymptotes of the curve $x^3 + y^3 - 3axy = 0$.	(05)
	b)	Find the maximum value of $f(x, y, z) = xyz$ subject to the constraint	(05)
		2x + 2y + z = 108 using Lagrange's method of undetermined multipliers	
	c)	Evaluate: $\int_0^1 \frac{x^5}{\sqrt{1-x^4}} dx$	(04)
Q-7		Attempt all questions	(14)
	a)	Find range of values of x for which the curve $y = x^4 - 6x^3 + 12x^2 + 5x + 7$ is	(05)
		concave upward and downward. Also find points of inflection in each case.	
	b)	Expand $e^x \cos y$ in powers of x and y up to three degree.	(05)
	c)	Evaluate : $\int_0^1 \sqrt{x} \sqrt[3]{(1-x^2)} dx$, with the help of beta function.	(04)
Q-8		Attempt all questions	(14)
	a)	Using definition of limit prove that $\lim_{(x,y)\to(1,3)} 5x + 7y = 26$.	(05)
	b)	If $x^3 + y^3 = 3ax^2$, prove that $\frac{d^2y}{dx^2} = -\frac{2a^2x^2}{y^5}$.	(05)
	c)	If $u = \sin^{-1}(x^3 + y^3)^{2/5}$ then prove that	(04)
		$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{6}{5} \tan u \left[\frac{6}{5} \sec^2 u - 1 \right].$	

